
2017–2018 Solution
Algebra - End-Semestral Exam - Semester II

1. Answer true or false. No marks will be awarded in the absence of proper justi

cation.

(a) Let A be a n× n matrix such that A2 = A and rank(A) = n. Then A = I .

Solution: True. Since rank(A) = n, A is invertible, then A2 = A implies that A−1.A2 = A−1.A,
which in turn, implies that A = I . 2

(b) If row space of a n× n matrix A equals its column space, then A = At.

Solution: False. Let us consider the matrix

A =

[
0 1
2 0

]
Then row space of A equals its column space, but A 6= At. 2

(c) Only possible eigenvalues of a 3× 3 symmetric orthogonal matrix are 1 and −1.

Solution: True. Since AAt = I and A = At, it implies that A2 = I . If λ is an eigenvalue of A
then λ2 = 1. Hence possible values of λ are 1 and −1. 2

(d) If A is a complex n× n matrix such that X∗AX is real for all X ∈ Cn, then A is Hermitian.

Solution: True. For any X ∈ Cn, we have

〈AX,X〉 = X∗AX is a real number.

Let us consider standard notation for unit vectors ej and ek, then we have

〈A(ej + ek), ej + ek〉 = ajj + akk + ajk + akj

i.e., ajk + akj is real since diagonal entries are real (aii = 〈Aei, ei〉). In turn, it implies that
Im(ajk) = −Im(akj). Similarly,

〈A(i.ej + ek), i.ej + ek〉 = ajj + akk − i.ajk + i.akj

i.e., i.(akj − ajk) is real. Hence, Re(akj) = Re(ajk).
Thus, for any 1 ≤ j, k ≤ n, we get Im(ajk) = −Im(akj) and Re(akj) = Re(ajk), which implies
A = A∗. 2
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(e) Eigenvalues of a real symmetric matrix are real.

Solution: True. Let A be a real symmetric matrix, λ be an eigenvalue of A, and x be the
corresponding eigenvector. Then

Ax = λx

x∗A∗ = λ̄x∗

x∗Ax = λ̄x∗x

λx∗x = λ̄x∗x

Since x 6= 0, x∗x 6= 0 (Here, −∗ denotes conjugate transpose). Hence, λ = λ̄, i.e. λ is a real
number. 2

2. Let A;B be m× n matrices over a field F. Prove that rank(A+B) ≤ rank(A)+ rank(B).

Solution: Let {a1, · · · , an} be the set of columns in A and {b1, · · · , bn} be the set of columns in B.
Then a1 + b1, · · · , an + bn denotes the set of columns of A+B.

Since Span{ai, bj} contains the Span{ai + bi} for 1 ≤ i, j ≤ n, it follows that the dimension of
column space of A + B is less than or equal to the sum of dimensions of column spaces of A and
B.

We know that rank of a matrix is same as the dimension of the column space (or row space) of the
matrix. Hence,

rank(A+B) ≤ rank(A) + rank(B).

2

3. Let

A =


1 1 0 0
−1 −1 0 0
−2 −2 2 1
1 1 −1 0


(a) Find the characteristic polynomial of A.

Solution: Let us consider the characteristic equation det(A−λI) = 0, which gives the following
expression.

{−λ(2− λ) + 1}{(1− λ)(−1− λ) + 1} = 0

λ2(1− λ)2 = 0.

The characteristic polynomial of A is x2(1− x)2.

(b) Find the minimal polynomial of A.
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Solution: Let us observe that by matrix multiplication it follows that

A(A− I) 6= 0

A2(A− I) 6= 0

A(A− I)2 6= 0.

Therefore, the minimal polynomial ofA is same as the characteristic polynomial x2(1−x)2. We
used the fact that minimal polynomial divides the characteristic polynomial and the matrix A
satisfies the minimal polynomial.

(c) Is A diagonalizable over C? Give reasons.

Solution: The matrix A is diagonalisable over C if and only if all the roots of the minimal
polynomial ofA are of algebraic multiplicity 1, i.e. minimal polynomial is a product of distinct
linear factors over C. Since, for the matrixA the minimal polynomial does not satisfy the above
mentioned necessary condition. So, A is not diagonalizable.

4. Let V be the space of all real polynomials of degree at most 3.

(a) Prove that

〈f, g〉 =

∫ 1

0

f(x)g(x)dx ∀f, g ∈ V

defines a positive definite symmetric bilinear form on V .

Solution: By the definition of 〈, 〉 : V × V → V it is straightforward to check that

〈f + g, h〉 = 〈f, h〉+ 〈g, h〉
〈f, g + h〉 = 〈f, g〉+ 〈f, h〉
〈λ.f, g〉 = λ.〈f, g〉 = 〈f, λ.g〉
〈f, g〉 = 〈g, f〉

Thus, 〈, 〉 is a symmetric bilinear form on V . Next, we have to show that for a non-zero f ∈ V
we get 〈f, f〉 > 0. Since f 6= 0, f2 6= 0 and f2(x) ≥ 0 for x ∈ [0, 1] which implies that∫ 1

0
f2(x)dx > 0. (Note that f2 is a polynomial and it can be zero at only finitely many points

in [0, 1]. Thus, the area under the curve f2 in [0, 1] is positive.)

(b) Find the orthogonal complement of the subspace of scalar polynomials.

Solution: Let S be the subspace of scalar polynomial and S⊥ be the orthogonal complement
of S. If f ∈ S⊥, then

〈f, c〉 =

∫ 1

0

c.f(x)dx = 0.

Let f = anx
n + an−1x

n−1 + · · ·+ a1x+ a0. Then 〈f, c〉 = 0 implies that

c = 0 or
an
n+ 1

+
an−1
n

+ · · ·+ a1
2

+ a0 = 0.

Thus, S⊥ = {f =
∑n

i=0 ai.x
i ∈ V | an

n+1 + an−1

n + · · ·+ a1

2 + a0 = 0}
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(c) Apply Gram-Schmidt process to the basis {1, x, x2, x3} to find an orthonormal basis of (V, 〈, 〉).

Solution: Let us start with the basis {1, x, x2, x3} and apply Gram-Schmidt process to find an
orthonormal basis. Let v1 = 1, then v2 is given by

v2 = x− 〈x, 1/2〉 = x− 1/2.

Now, ||v2||2 =
∫ 1

0
(t− 1/2)2dt = 1/12.

Next,

v3 = x2 − 〈x
2, v1〉
||v1||2

.v1 −
〈x2, v2〉
||v2||2

.v2

i.e., v3 = x2 − x+ 1/6. Also,
||v3||2 = 1/36.

Then,

v4 = x3 − 〈x
3, v1〉
||v1||2

.v1 −
〈x3, v2〉
||v2||2

.v2 −
〈x3, v3〉
||v3||2

.v3

i.e., v4 = x3 − 3
10 (x2 − x+ 1

6 )− 9
10 (x− 1

2 )− 1
4 .

Hence, an orthonormal basis of V is given by

{1, v2
||v2||

,
v3
||v3||

,
v4
||v4||

}.

5. (a) Prove that a complex matrix M is normal if and only if there is a unitary matrix P such that
P ∗MP is diagonal.

Solution: Let us first assume that there exists a unitary matrix P such that P ∗MP is diagonal.
Next, observe that diagonal matrices commute and therefore, diagonal matrices are normal. If
P ∗MP = D for a diagonal matrix D, then M is normal.
Conversely, let M be normal. By the Schur decomposition, the matrix M can be written as
M = P ∗TP , where P is unitary matrix and T is an upper-triangular matrix. SinceA is normal,
it follows that

TT ∗ = T ∗T.

Therefore, T must be diagonal since a normal upper triangular matrix is diagonal. 2

(b) Hence show that every conjugacy class in the unitary group Un(C) = {P ∈ Cn×n : P ∗P = I}
contains a diagonal matrix.

Solution: Let us consider conjugacy class of an element Q ∈ Un(C). Since Q∗Q = I = QQ∗, it
follows that Q is a normal matrix. Thus, there exists a matrix P ∈ Un(C) such that P ∗QP =
P−1QP = D, where D is a diagonal matrix. Hence, every conjugacy class in Un(C) contains a
diagonal matrix.

6. Let

A =

[
2 1 + i

1− i 3

]
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(a) Find the eigenvalues of A and corresponding eigenvector.

Solution: The characteristic polynomial of A is x2 − 5x + 4. Hence, the eigenvalues are 1, 4.
The corresponding eigenvectors are solutions of the equation:

(A− λ.I)X = 0.

Note that X ∈ C2. It follows that the eigenvector corresponding to eigenvalue 1 is:

X1 =

[
1 + i
−1

]
and the eigenvector corresponding to eigenvalue 4 is:

X2 =

[
1

1− i

]
.

2

(b) Find a unitary matrix P such that P ∗AP is a diagonal matrix.

Solution: Note that ||X1|| = ||X2|| =
√

3. Since A is a Hermitian matrix, let us define a matrix
P with column vectors X1

||X1|| and X2

||X2|| .

P =
1√
3

[
1 + i 1
−1 1− i

]
Note that PP ∗ = I , i.e. P is a unitary matrix. Moreover,

P ∗AP =

[
1 0
0 4

]
.
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